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Results are presented of an investigation of the singularities of sound wave 
propagation in a polymer solution with bubbles. 

Two-phase systems of a polymer fluid (solution or melt) and gas bubbles are formed during 
production and polymer reworking processes because of chemical gas liberation, low wetta- 
bility of the solid boundaries of the carrying medium, etc. The stability of such systems 
is determined by the high Newtonian viscosity of the liquid phase which hinders spontaneous 
gravitational phase separation [i]. An important condition in the progress of many processes 
is the preliminary evacuation of free gas, with which the problem of bubble diagnostics is 
related directly. One method of determining the gas content in a fluid is acoustic [i, 2], 
which raises the interest in studying weak pressure perturbation propagation in polymer media 
with bubbles. The purpose of this paper is to derive a dispersion equation for a relaxing 
polymer fluid with gas inclusions that takes account of all fundamental dissipative effects 
accompanying bubble fluctuation in the wave. 

Sound propagation in a medium with bubbles will be considered as a process of multiple 
scattering of the fundamental signal [3]. In a first step we construct the wave field 
scattered by a single bubble. It is convenient to execute the solution in dimensional 
variables by selecting the quantities02o,p2o, To and the equilibrium radius of one of the 
bubbles Ro (we consider the mixture polydisperse) as the characteristic parameters. We 
write the linearized equations of motion and continuity in the form 

av2 _ ap2 
0~ VP2 + V "~, -- --V.V2. (i) 

0~ 

For  a m o n o c h r o m a t i c  i n c i d e n t  wave ,  t h e  p e r t u r b a t i o n s  o f  t h e  h y d r o d y n a m i c  q u a n t i t i e s  i n  
(i) can be represented in the form 

{v2, P2, P2, n} = {v 2, P2' P2' ~*}expio)'r, (2)  

where the asterisk denotes complex amplitudes of the perturbations. The tensor ~ and the 
scalar P2 are defined according to the general hereditary models for a polymer medium relax- 
ing under shear and volume deformations based on the Boltzmann--Volterra principle [4] : 

, , 092 G2 ('r - -  ~:') ekhd'r:', z~ij = 2 G1 ('v - -  "r') sijd'~' + 2vl~ sij, P2 = % Or 

G~ (x) = G=0 + ~ F~(k) e -~/~ dk, Gx0 = 0, G~o = K* = KaP2J �9 (3) 
0 

Sound wave propagation in a fluid is later considered an adiabatic process while the 
deviations from adiabaticity, as a consequence of interphasal heat transfer, are taken into 
account only in direct proximity to the phase interfaces, which is perfectly justifiable in 
the case of gas bubbles [5]. 

Let us introduce the velocity potential ~o in the incident wave by setting v2=V~0. 
Then we obtain the Helmholtz equation for ~o from (1)-(3): 

V~o + (o~VG) % = O, (4) 

= -  * �9 * o +io . G 4 (G~+ i m p 2 ) +  62 + t m ~ ,  ~ =  
3 
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Let ~ko denote the fluid velocity potential at the point rh of the fundamental wave 
field. Let a single bubble with equilibrium radius Rko be located at this point of the 
space. We take the long-wave approximation (12 >> Rko) usual in acoustics problems of two- 
phase media, and we express the scattered wave field ~ks in terms Of the potential ~ko. We 
introduce a spherical coordinate system connected with the center of the bubble. Then taking 
the symmetry of the fluid flow around a radially fluctuating bubble into account, we obtain 
the solution corresponding to a divergent wave for ~ks from (4): 

r~2hs =- Ak  exp [i ((o~ - -  mr)], m = o3G - i / 2  , (5 )  

where A k is an arbitrary constant. The amplitudes of the fluid velocity perturbation V*2s and 
the pressure P*s of the scattered wave are determined in the form 

v~'~ = - -  r-O'Ah (1 + imr)  exp ( - -  imr),  (6)  

p)~ = io~r -~ (G~' + ho~l~) Ak exp (-- imr) .  
,_ 3 

We f i n d  t h e  c o n s t a n t  A k f r o m  t h e  c o n d i t i o n  f o r  j u n c t i o n  o f  t h e  s o l u t i o n s  o f  "the e x t e r n a l  
and  i n t e r n a l  p r o b l e m s  f o r  t h e  f l u c t u a t i n g  b u b b l e .  We u s e  t h e  h o m o b a r i c i t y  c o n d i t i o n  (Zx >> 
R k o ) ,  w h i c h  i s  v a l i d  i n  a b r o a d  f r e q u e n c y  r a n g e  [ 6 ] ,  i n  f o r m u l a t i n g  t h e  g a s  d y n a m i c s  e q u a -  
tions for the gas in the bubble. Then the linearized system of dimensionless equations of 
the internal problem is written in the form 

0 
OP-----L-1 + r -2 .(r~ul) = O, Pl = P~o (Pl -~ 0), (7)  
O~c Or 

O0 Opl i 
0--~- = ( Y -  1) (YP~o)-' 0w q- - ~ e  V~0' 

( ( )  1 O0 R~ 1 OPl = 3y  
--fie 

We seek the bubble radius in the form of the real part of the expression 

R ~ =  sh(1 + 6hexpi(io~)), sh = Rko/Ro,  

and the small perturbations of the gasdynamic parameters analogously to (2) 

{Pl, Pl, vx, 0} = {Pi, Pl, vl, 0*}exp(io)x). -" (8)  

We denote the pressure perturbation in an incident wave on the bubble surface by 
Pkoexp* (imT) and we formulate the dynamic, kinematic, and thermal boundary conditions 

P ~ -  ~ ,  = Pl + 2~*s~-~ ~6~ exp (io~), (9)  

~* : (I (P2oR0) -i ,  Ps = (P~'0 + P's) exp (ion), 

vl  = v2 = io~s~f~exp(io~x), 0 = 0, r = s~; 0 <  90, r = 0. 

T a k i n g  a c c o u n t  o f  ( 6 ) ,  ( 8 ) ,  and  ( 9 ) ,  t h e  s o l u t i o n  o f  s y s t e m  (7) y i e l d s  

A k = Dh (2~* + o2s~(1 + 

~ = i~Pe, 

We express the pressure perturbation 
the scattered wave potential ~ks in terms 
at this point by using (1)-(3). We obtain 

(i0) 

irn~,~) -1 - -  4 (G; 4- ir ) ) -  3p~oV[3 2, 

% = 15 cth[~sk - -  s~ - l .  

Pko in the incident wave at the point r = r k and 
of the value ~ko of the fundamental wave potential 

P~o = B~ho exp ( - -  icon), B == icoG - t  (G1 + ~(O~l~ ) - -  G , 

rt~h~ = (I)h~ko exp ( - -  imrh), Ol.~ = - -  io~s~6hB, rh = I r - -  rkl. 

We consider sound wave interaction with the collective of bubbles. In the polymer 
volume V under consideration let there be N bubbles with the equilibrium radii Rko (k = 
i, 2, ..., N). Following [7], we introduce the probability distribution function for the 
bubble configuration 

(il) 
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P . . . .  q ( r ,  51)q (r2, so.) q (rg' SN)' (12) 

where q ( r ,  s)ds is the mean value of the number of bubbles per unit volume with center at 
the point r, whose radii are in the band (s, s + ds). Then the configuration mean of the 
arbitrary quantity f = f(rj, sj) that depends on the bubble location in the system can be 
determined from the formula 

V* V* 

. . .  dSNdrldrs . . . dr N, V*  : V / P ,  3. (13) 

Let  ~(r)  be t he  p o t e n t i a l  o f  t h e  r e s u l t a n t  f i e l d  due t o  t h e  s u p e r p o s i t i o n  o f  t h e  f u n d a -  
m e n t a l  and s c a t t e r e d  f i e l d s  s t h e  medium w i t h  bubbles, taking multiple s c a t t e r i n g  i n t o  
a c c o u n t .  The f a c t o r  exp ( i~z )  w i l l  h e n c e f o r t h  be o m i t t e d ,  f o r  b r e v i t y .  Then,  by r e p r e s e n t -  
i ng  t h e  r e s u l t a n t  f i e l d  i n  t he  n e i g h b o r h o o d  o f  each  b u b b l e  as  t h e  s u p e r p o s i t i o n  o f  an i n c i -  
d e n t  wave and a wave scattered by a bubble, we arrive at the equations 

~h = ~ (rk) - -  ~h~ = ~ (r~) - -  r~-l(l)k~k exp (--  imrh),  (14) 

N N 

h = l  h = l  

where *k i s  t he  p o t e n t i a l  o f  t h e  wave a c t i n g  on t h e  k - t h  b u b b l e .  On t h e  o t h e r  hand,  t h e  po -  
t e n t i a l  *k can be r e p r e s e n t e d  i n  t h e  form 

N 

~l;l~ = ~0(r1~) + ,~  ~q~,~r~ 1 exp (--imr,~k), l '~ = I r , , -  rhl. (16) 
n = l  
r / s k  

System (14)-(16) determines the desired quantities as characteristics of the self-con- 
sistent field. Evaluating the configuration mean (13) from both sides of (14) with (4), 
(15), and (16) taken into account, we obtain an equation for the potential of the mean sound 
wave field in a polymer fluid with bubbles 

V: < i *  (r)~> + n ~ < ,  (r) > = 0, (17) 

n== o)=G-'--4n;~ e ( 1 -  4 0 -* (O ~  + h o ' l : ) ) S  s~n(r, SU)~kdSk (18) 

Equation (18) solves the problem formulated. The specific nature of the wave dispersion 
and absorption can be analyzed if the bubble distribution law is known in space and by size. 
This equation takes account of the influence of all the fundamental factors on the sound 
wave propagation process: the rheological features of the polymer fluid, the nonequilibrium 
interphasal heat transfer, the losses in sound radiation by the bubbles, the semidispersity 
of the mixture. For a monodisperse mixture of homogeneously distributed inclusions Sk---i; 
here [8] 

S s~q (sk)-~kds~ = (4n)-~3a0 (1 - -  a0)6, 6~ ~ ~ (k = 1, 2 . . . . .  N). 

Then the dispersion equation (18) takes the form 

: I ( 4 )] 
~2 c~ 1 - - 3 ~ 0 ( 1 - - ~ 0 )  G - -  ~ ( G l + 3  ~C~ -~ " ( 1 9 )  

I f  components  c h a r a c t e r i z i n g  t h e  r h e o l o g i c a i  and t h e r m a l  d i s s i p a t i o n  a r e  n e g l e c t e d  i n  
(19), we find by setting G* = 0, G* = "* * * , ns = ~v = 0 and lB I ~) 1 or I~I << i 

_ _  3 a  o (1 - -  no) 1 _ 1 + 2 K*, 02 = 3 P * o ? - -  2a*,  ( 2 0 )  
c '  c~ oYo - -  ~o ~" + io : /Co  ' c~  : 

which agrees with the classical dispersion equation of the theory of multiple scattering for 
a fluid with gas bubbles [8] with just acoustic losses taken into account during fluctuation 
of the inclusions. 

As follows from (19), the "frozen" speed of sound in the system is in agreement with 
the speed of acoustic wave propagation in a pure relaxing fluid. The magnitude of the equi- 
librium sound velocity is independent of the rheological parameters of the medium since 

* * * G* + K* {GI, ~s, ~v} § 0 and as ~ § 0. 
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Fig. i. Sound dispersion and absorption in a polymer 
solution with air bubbles (f = (m/to)/(2~'103), ~m=. 
--Im{n}/Ro, C = (u/Re{n})(pao/Pao)11a. Ro : i0- ~ : 
103 , K a = 1.61" 109Pa, Pao = 850 kg/m 3, o = 0.022 N/m, 
~ = i0 -2 sec): I, I') ~o = 10-4; 2, 2') ~o  = i0 -a. 
C, m/sec; f,kHz. 

For numerical computations on an electronic computer, the dimensional frequencies f, the 
sound speed C and the wave damping factor ~ were determined from (19). The results of the 
computations are presented in the figure, a and b, for a polymer solution with air bubbles 
at To = 20~ and Pao = 105 Pa. The relaxation spectrum was taken in the form 

k = l '  k = l  

The maximal relaxation time in the spectrum ~ and the quantity ~ were estimated by the 
Kargin--Slonimskii--Rauth model. The values taken correspond in order of magnitude, for in- 
stance, to a 2.5% solution of polystyrene with molecular weight 2"106 in toluene [9]. Compu- 
tations showed that taking account of the bulk viscoelasticity of the solution in the pres- 
ence of bubbles does not affect the values of C and ~. Curves i, 2 in the figure correspond 
to a Newtonian fluid with viscosity of the solution (np= ~s = 0.5 Pa'sec); i', 2' to the 
polymer solution (np= 0.5 Pa'sec, ns = 0.5"10-3 Pa'sec). 

As follows from the graphs, taking account of the viscoelastic properties of the liquid 
phase in the example considered changes the nature of sound dispersion qualitatively in a 
medium with gas bubbles. A computation by a Newtonian rheological model of a fluid yield~ 
growth in the sound velocity with frequency on the low-frequency branch of the dispersion 
curve, while the maximal velocity of wave propagation only exceeds the "frozen" sound 
velocity insignificantly and can be in agreement with it in the case of high fluid viscosity 
and sufficiently small size and concentration of the inclusions (curve i in Fig. la). Such 
a kind of dependence C = C(f) for curve 1 is due to the large dissipation in the system be- 
cause of the high Newtonian viscosity of the medium resulting in this case in not only the 
disappearance of the "window of opacity" on the dispersion curve which is characteristic for 
a system without dissipation [I0], but also in the fact that the least velocity of sound 
propagation in a bubble mixture agrees with the equilibrium value Ce =lim C However, the 

influence of the relaxation properties of the liquid phase results in a change in the sign 
of the dispersion in the left branch of the dispersion curve, whereupon the minimal velocity 
of sound wave propagation turns out to be less than C e. The sound propagation velocity in 
the high-frequency range simultaneously grows significantly; here the location of the dis- 
persion zone on the frequency axis is conserved. 

As computations show, growth in the amplitude of the gas bubble fluctuations in a wave 
that is due to viscoelasticity effects results in a significant increase in the sound absorp- 
tion in a fluid with bubbles near the resonance frequencies (Fig. ib). Far from the reso- 
nance frequency, the sound damping in a relaxing medium with bubbles can be substantially 
lower than in an analogous viscous fluid. As the concentration of inclusions, as well as 
the bubble size, increase, the role of the rheological factors weakens and the differences 
between the results of computations using the relaxation and Newtonian models of the liquid 
phase level off. Let us mention that the change in sign of sound dispersion in the pre- 
resonance frequency domain when taking account of the viscoelastic properties of the liquid 
phase for the curves in Fig. la results in the existence of a frequency at which the velocity 
of wave propagation in the relaxing and analogous viscous fluid with gas bubbles agrees. 
The corresponding point is marked with a circle on the dispersion curves. 
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The results obtained are explained physically by a change in the contribution of the 
rheological dissipative mechanism to the total dissipation during sound propagation in a 
theologically complex relaxing medium with bubbles as compared with an analogous viscous 
fluid. Since the magnitude of the dissipative losses in a polymer medium turns out to be 
substantially less during bubble fluctuations than in an analogous viscous fluid [ii], the 
sound dispersion and absorption do not grow in the resonance zone. 

NOTATION 

Dimensional quantities: k, Cp, heat-conduction coefficient and specific heat of the 
gas at constant pressure; To, equilibrium temperature; Pio, Pio, equilibrium pressure and 
density; T, gas temperature; Ks, ~v, shear and bulk viscosities of the solvent; Ka, adiabatic 
volume modulus; o, surface tension coefficient; ~[, maximal relaxation time; to = Ro(p2o/ 
p2o) ~/2, no = Ro(p2oP=o) ~/2, characteristic time and viscosity coefficient; ~p, Newtonian 
viscosity of the solution; ~:, 12, sound wavelength in the gas and fluid, respectively. 
Dimensionless quantities: Pe = Ro(p2o/p2o)a -I, Peclet number; a =k/(p~ocp), thermal dif- 
fusivity factor; y, gas adiabatic index; v~, p~, p~. ~ , velocity, pressure, density, and stress 
tensor deviator perturbations in the wave; T, time; % = %'/to, relaxation time; w, wave fre- 
quency; eij , sij , strain rate tensor and its deviator, respectively; F~(%), G~, G~ (~ = i, 2), 
relaxation time distribution function and the components of the complex dynamical elastic 
moduli; 6 = T/To -- l,p* ~o = P~o/P=o, temperature perturbation and equilibrium pressure in the gas; 
R k = Rk/Ro , running bubble radius; r, radius of the spherical coordinate system; n, c = m/n, 
complex wave number and speed of sound in a fluid with bubbles; co, speed of sound in a pure 
fluid; ns, ~v, ~o = {qs, nv, ~p}/~o, dimensionless viscosity coefficients; ~o, volume bubble 
concentration; 6~% -- %k), delta function. Subscripts: i = i, gas phase; i = 2, fluid. 
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